Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Heliyon ; 10(7): e28627, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590893

RESUMO

Coronavirus disease 2019 (COVID-19) is continuously posing high global public health concerns due to its high morbidity and mortality. This study aimed to construct a convenient risk model for predicting in-hospital mortality of COVID-19 Omicron variant. A total of 1324 hospitalized patients with Omicron variant were enrolled from Beijing Anzhen Hospital. During hospitalization, the Omicron variant mortality rate was found to be 24.4%. Using the datasets of clinical demographics and laboratory tests, three machine learning algorithms, including best subset selection, stepwise selection, and least absolute shrinkage and selection operator regression analyses were employed to identify the potential predictors of in-hospital mortality. The results found that a panel of twenty-four clinical variables (including age, hyperlipemia, stroke, tumor, and several cardiovascular markers) identified by stepwise selection model exhibited significant performances in predicting the in-hospital mortality of COVID-19. The resultant nomogram showed good discrimination, highlighted by the areas under the curve values of 0.88 for 10 days, 0.81 for 20 days, and 0.82 for 30 days, respectively. Furthermore, decision curve analysis showed a significant reliability and precision for the established stepwise selection model. Collectively, this study developed an accurate and convenience risk model for predicting the in-hospital mortality of COVID-19 Omicron.

2.
Angiology ; : 33197241238509, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468156

RESUMO

This study aimed to determine whether red cell distribution width (RDW) is associated with coronary calcification. A total of 4796 patients who underwent coronary computed tomography angiography and subsequent invasive coronary angiography were consecutively enrolled. Coronary artery calcium score (CACS), demographic, clinical, and laboratory data were collected from electronic medical records. RDW were expressed in two forms, as a coefficient of variation (CV) or as a standard deviation (SD). Multivariable ordinal logistic regression was used to investigate the association of RDW with CACS grades (CACS 0-99, 100-399, 400-999, and >1000). A significant association was found between elevated RDW-SD and higher CACS grades after full adjustment (adjusted OR per 1-SD increase: 1.11, 95% CI: 1.05-1.18; P < .001), while no significant association was found between RDW-CV and CACS grades. When RDW-SD was analyzed as a categorical variable, it was primarily the 4th quartile of RDW-SD that was associated with elevated CACS grades compared with the 1st quartile (adjusted OR: 1.25, 95% CI: 1.07-1.46; P = .006), while the 2nd and 3rd quartiles showed no significantly higher risk. RDW-SD is a more robust biomarker for coronary calcification compared with RDW-CV.

3.
Angew Chem Int Ed Engl ; 63(15): e202400012, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38340327

RESUMO

Hollow nanoporous carbon architectures (HNCs) present significant utilitarian value for a wide variety of applications. Facile and efficient preparation of HNCs has long been pursued but still remains challenging. Herein, we for the first time demonstrate that single-component metal-organic frameworks (MOFs) crystals, rather than the widely reported hybrid ones which necessitate tedious operations for preparation, could enable the facile and versatile syntheses of functional HNCs. By controlling the growth kinetics, the MOFs crystals (STU-1) are readily engineered into different shapes with designated styles of crystalline inhomogeneity. A subsequent one-step pyrolysis of these MOFs with intraparticle difference can induce a simultaneous self-hollowing and carbonization process, thereby producing various functional HNCs including yolk-shell polyhedrons, hollow microspheres, mesoporous architectures, and superstructures. Superior to the existing methods, this synthetic strategy relies only on the complex nature of single-component MOFs crystals without involving tedious operations like coating, etching, or ligand exchange, making it convenient, efficient, and easy to scale up. An ultra-stable Na-ion battery anode is demonstrated by the HNCs with extraordinary cyclability (93 % capacity retention over 8000 cycles), highlighting a high level of functionality of the HNCs.

4.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370737

RESUMO

Protein S (PS), the critical plasma cofactor for the anticoagulants tissue factor (TF) pathway inhibitor (TFPI) and activated protein C (APC), circulates in two functionally distinct pools: free (anticoagulant) or bound to complement component 4b-binding protein (C4BP) (anti-inflammatory). Acquired free PS deficiency is detected in several viral infections, but its cause is unclear. Here, we identified a shear-dependent interaction between PS and von Willebrand Factor (VWF) by mass spectrometry. Consistently, plasma PS and VWF comigrated in both native and agarose gel electrophoresis. The PS/VWF interaction was blocked by TFPI but not APC, suggesting an interaction with the C-terminal sex hormone binding globulin (SHBG) region of PS. Microfluidic systems, mimicking arterial laminar flow or disrupted turbulent flow, demonstrated that PS stably binds VWF as VWF unfolds under turbulent flow. PS/VWF complexes also localized to platelet thrombi under laminar arterial flow. In thrombin generation-based assays, shearing plasma decreased PS activity, an effect not seen in the absence of VWF. Finally, free PS deficiency in COVID-19 patients, measured using an antibody that binds near the C4BP binding site in SHBG, correlated with changes in VWF, but not C4BP, and with thrombin generation. Our data suggest that PS binds to a shear-exposed site on VWF, thus sequestering free PS and decreasing its anticoagulant activity, which would account for the increased thrombin generation potential. As many viral infections present with free PS deficiency, elevated circulating VWF, and increased vascular shear, we propose that the PS/VWF interaction reported here is a likely contributor to virus-associated thrombotic risk.

5.
Eur Radiol ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38337067

RESUMO

OBJECTIVES: Utilising readily available clinical variables, we aimed to develop and validate a novel machine learning (ML) model to predict severe coronary calcification, and further assessed its prognostic significance. METHODS: This retrospective study enrolled patients who underwent coronary CT angiography and subsequent invasive coronary angiography. Multiple ML algorithms were used to train the models for predicting severe coronary calcification (cardiac CT-measured coronary artery calcium [CT-CAC] score ≥ 400). The ML-based CAC (ML-CAC) score derived from the ML predictive probability was stratified into quartiles for prognostic analysis. The primary endpoint was a composite of all-cause death, nonfatal myocardial infarction, or nonfatal stroke. RESULTS: Overall, 5785 patients were divided into training (80%) and test sets (20%). For clinical practicability, we selected the nine-feature support vector machine model with good and satisfactory performance regarding both discrimination and calibration based on five repetitions of the 10-fold cross-validation in the training set (mean AUC = 0.715, Brier score = 0.202), and based on the test in the test set (AUC = 0.753, Brier score = 0.191). In the test set cohort (n = 1137), the primary endpoint was observed in 50 (4.4%) patients during a median 2.8 years' follow-up. The ML-CAC system was significantly associated with an increased risk of the primary endpoint (adjusted hazard ratio for trend 2.26, 95% CI 1.35-3.79, p = 0.002). There was no significant difference in the prognostic value between the ML-CAC and CT-CAC systems (C-index, 0.67 vs. 0.69; p = 0.618). CONCLUSION: ML-CAC score predicted from clinical variables can serve as a novel prognostic indicator in patients referred for invasive coronary angiography. CLINICAL RELEVANCE STATEMENT: In patients referred for invasive coronary angiography who have not undergone preoperative CT-measured coronary artery calcium scoring, machine learning-based coronary artery calcium score assessment can serve as an alternative for predicting the prognosis. KEY POINTS: • The coronary artery calcium (CAC) score, a solid prognostic indicator, can be predicted using non-CT methods. • We developed a machine learning (ML)-CAC model utilising nine clinical variables to predict severe coronary calcification. • The ML-CAC system offers significant prognostic value in patients referred for invasive coronary angiography.

6.
Arterioscler Thromb Vasc Biol ; 44(3): 533-544, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38235555

RESUMO

Both hyperlipidemia and thrombosis contribute to the risks of atherosclerotic cardiovascular diseases, which are the leading cause of death and reduced quality of life in survivors worldwide. The accumulation of lipid-rich plaques on arterial walls eventually leads to the rupture or erosion of vulnerable lesions, triggering excessive blood clotting and leading to adverse thrombotic events. Lipoproteins are highly dynamic particles that circulate in blood, carry insoluble lipids, and are associated with proteins, many of which are involved in blood clotting. A growing body of evidence suggests a reciprocal regulatory relationship between blood clotting and lipid metabolism. In this review article, we summarize the observations that lipoproteins and lipids impact the hemostatic system, and the clotting-related proteins influence lipid metabolism. We also highlight the gaps that need to be filled in this area of research.


Assuntos
Aterosclerose , Trombose , Humanos , Qualidade de Vida , Coagulação Sanguínea , Aterosclerose/patologia , Fatores de Coagulação Sanguínea , Lipoproteínas , Fibrinólise
7.
Clin Cardiol ; 47(1): e24162, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37936512

RESUMO

BACKGROUND: Appropriate time for ejection fraction (EF) reassessment after revascularization in patients with left ventricular dysfunction has not been investigated comprehensively, although 3 months after revascularization is recommended to stratify the risk of sudden cardiac death (SCD). HYPOTHESIS: EF reassessed within different timeframe after revascularization may have incosistent contribution for risk stratification of SCD. METHODS: Patients who had EF ≤ 40% before revascularization and had EF reassessment at least once during follow-up were included. The role of early (<3 months) versus late (3-12 months) EF measurements in prediction of all-cause mortality and SCD were compared. RESULTS: A total of 1589 patients were identified. EF reassessed <3 months was lower than EF reassessed within 3-12 months (42.1 ± 9.7% vs. 45.8 ± 10.8%; p < .01). Among 1069 patients who had EF reassessed <3 months, EF ≤ 35% was associated with a higher risk of all-cause mortality (hazard ratio [HR], 1.67; 95% confidence interval [CI], 1.22-2.29; p < .01), but had no association with the risk of SCD (HR, 1.44; 95% CI, 0.84-2.48; p = .18). By contrast, among 595 patients who had EF reassessed within 3-12 months, EF ≤ 35% was associated with higher risks of both all-cause death (HR, 1.81; 95% CI, 1.06-3.10; p = .03) and SCD (HR, 2.71; 95% CI, 1.31-5.61; p < .01). The relative contribution of SCD to all-cause death was higher in patients with EF ≤ 35% than patients with EF > 35% when EF was reassessed within 3-12 months (p = .04). However, when EF was reassessed <3 months, the mode of death was similar in patients with EF ≤ 35% versus >35% (p = .85). CONCLUSIONS: 3 to 12 months after revascularization may be appropriate for cardiac function reassessment and SCD risk stratification.


Assuntos
Desfibriladores Implantáveis , Disfunção Ventricular Esquerda , Humanos , Volume Sistólico , Fatores de Risco , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Medição de Risco , Desfibriladores Implantáveis/efeitos adversos
8.
J Exp Psychol Gen ; 153(1): 102-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37796577

RESUMO

In a conventional (Stroop) priming paradigm, it was well documented that objective prime-target incongruency delays response time (RT) to target compared to prime-target congruent condition. Recent evidence suggests that incongruency between the target and subjectively reported prime identity also delays RT over and above the classic congruency effect. When the prime is rendered invisible, the former effect is fundamentally a bottom-up (BU) stimulus-driven congruency effect and the latter a top-down (TD) guess-driven congruency effect. An influential theory of consciousness, global neuronal workspace theory, postulates that the long-lasting simultaneous and reciprocal interaction between TD decision network and BU input network is preserved during conscious processing and disabled during unconscious processing. Current study is focused on testing this theoretical postulation using two behavioral experiments. Our results showed that indeed TD-congruency and BU-congruency produced additive RT effects on prime-invisible trials, which implies that TD and BU prime representations are activated in independent neuronal populations. Meanwhile, an underadditive interaction effect was observed as prime visibility rose, which is a signature that TD and BU prime representations recruited overlapping neuronal populations during conscious perception. In addition, we suggest that current behavioral paradigm might be a financially friendly alternative to detect the presence of representational overlap in the brain between a wide range of mental representations, such as expectation, prediction, conscious/unconscious perception, and conscious/unconscious working memory. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Encéfalo , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Tempo de Reação , Conscientização/fisiologia
9.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119644, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37996059

RESUMO

Since Nrf1 and Nrf2 are essential for regulating the lipid metabolism pathways, their dysregulation has thus been shown to be critically involved in the non-controllable inflammatory transformation into cancer. Herein, we have explored the molecular mechanisms underlying their distinct regulation of lipid metabolism, by comparatively analyzing the changes in those lipid metabolism-related genes in Nrf1α-/- and/or Nrf2-/- cell lines relative to wild-type controls. The results revealed that loss of Nrf1α leads to lipid metabolism disorders. That is, its lipid synthesis pathway was up-regulated by the JNK-Nrf2-AP1 signaling, while its lipid decomposition pathway was down-regulated by the nuclear receptor PPAR-PGC1 signaling, thereby resulting in severe accumulation of lipids as deposited in lipid droplets. By contrast, knockout of Nrf2 gave rise to decreases in lipid synthesis and uptake capacity. These demonstrate that Nrf1 and Nrf2 contribute to significant differences in the cellular lipid metabolism profiles and relevant pathological responses. Further experimental evidence unraveled that lipid deposition in Nrf1α-/- cells resulted from CD36 up-regulation by activating the PI3K-AKT-mTOR pathway, leading to abnormal activation of the inflammatory response. This was also accompanied by a series of adverse consequences, e.g., accumulation of reactive oxygen species (ROS) in Nrf1α-/- cells. Interestingly, treatment of Nrf1α-/- cells with 2-bromopalmitate (2BP) enabled the yield of lipid droplets to be strikingly alleviated, as accompanied by substantial abolishment of CD36 and critical inflammatory cytokines. Such Nrf1α-/- -led inflammatory accumulation of lipids, as well as ROS, was significantly ameliorated by 2BP. Overall, this study provides a potential strategy for cancer prevention and treatment by precision targeting of Nrf1, Nrf2 alone or both.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fator 1 Relacionado a NF-E2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Fator 2 Relacionado a NF-E2/genética , Palmitatos , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio , Fator 1 Relacionado a NF-E2/genética
10.
Small ; : e2308066, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057129

RESUMO

Porous carbons are important electrode materials for supercapacitors. One of the challenges associated with supercapacitors is improving their energy density without relying on pseudocapacitance, which is based on fast redox reactions that often shorten device lifetimes. A possible solution involves achieving high total capacitance (Ctot ), which comprises Helmholtz capacitance (CH ) and possibly quantum capacitance (CQ ), in high-surface carbon materials comprising minimally stacked graphene walls. In this work, a templating method is used to synthesize 3D mesoporous graphenes with largely identical pore structures (≈2100 m2 g-1 with an average pore size of ≈7 nm) but different concentrations of oxygen-containing functional groups (0.3-6.7 wt.%) and nitrogen dopants (0.1-4.5 wt.%). Thus, the impact of the heteroatom functionalities on Ctot is systematically investigated in an organic electrolyte excluding the effect of pore structures. It is found that heteroatom functionalities determine Ctot , resulting in the cyclic voltammetry curves being rectangular or butterfly-shaped. The nitrogen functionalities are found to significantly enhance Ctot owing to increased CQ .

11.
Small ; : e2306325, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032161

RESUMO

Due to the manufacturability of highly well-defined structures and wide-range versatility in its microstructure, SiO2 is an attractive template for synthesizing graphene frameworks with the desired pore structure. However, its intrinsic inertness constrains the graphene formation via methane chemical vapor deposition. This work overcomes this challenge by successfully achieving uniform graphene coating on a trimethylsilyl-modified SiO2 (denote TMS-MPS). Remarkably, the onset temperature for graphene growth dropped to 720 °C for the TMS-MPS, as compared to the 885 °C of the pristine SiO2 . This is found to be mainly from the Si radicals formed from the decomposition of the surface TMS groups. Both experimental and computational results suggest a strong catalytic effect of the Si radicals on the CH4 dissociation. The surface engineering of SiO2 templates facilitates the synthesis of high-quality graphene sheets. As a result, the graphene-coated SiO2 composite exhibits a high electrical conductivity of 0.25 S cm-1 . Moreover, the removal of the TMP-MPS template has released a graphene framework that replicates the parental TMS-MPS template on both micro- and nano- scales. This study provides tremendous insights into graphene growth chemistries as well as establishes a promising methodology for synthesizing graphene-based materials with pre-designed microstructures and porosity.

12.
Front Med (Lausanne) ; 10: 1136129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724179

RESUMO

Background: Coronavirus disease 2019 (COVID-19) is an infectious disease spreading rapidly worldwide. As it quickly spreads and can cause severe disease, early detection and treatment may reduce mortality. Therefore, the study aims to construct a risk model and a nomogram for predicting the mortality of COVID-19. Methods: The original data of this study were from the article "Neurologic Syndromes Predict Higher In-Hospital Mortality in COVID-19." The database contained 4,711 multiethnic patients. In this secondary analysis, a statistical difference test was conducted for clinical demographics, clinical characteristics, and laboratory indexes. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis were applied to determine the independent predictors for the mortality of COVID-19. A nomogram was conducted and validated according to the independent predictors. The area under the curve (AUC), the calibration curve, and the decision curve analysis (DCA) were carried out to evaluate the nomogram. Results: The mortality of COVID-19 is 24.4%. LASSO and multivariate logistic regression analysis suggested that risk factors for age, PCT, glucose, D-dimer, CRP, troponin, BUN, LOS, MAP, AST, temperature, O2Sats, platelets, Asian, and stroke were independent predictors of CTO. Using these independent predictors, a nomogram was constructed with good discrimination (0.860 in the C index) and internal validation (0.8479 in the C index), respectively. The calibration curves and the DCA showed a high degree of reliability and precision for this clinical prediction model. Conclusion: An early warning model based on accessible variates from routine clinical tests to predict the mortality of COVID-19 were conducted. This nomogram can be conveniently used to facilitate identifying patients who might develop severe disease at an early stage of COVID-19. Further studies are warranted to validate the prognostic ability of the nomogram.

13.
Res Pract Thromb Haemost ; 7(6): 102164, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37680312

RESUMO

Background: Patients with COVID-19 have a higher risk of thrombosis and thromboembolism, but the underlying mechanism(s) remain to be fully elucidated. In patients with COVID-19, high lipoprotein(a) (Lp(a)) is positively associated with the risk of ischemic heart disease. Lp(a), composed of an apoB-containing particle and apolipoprotein(a) (apo(a)), inhibits the key fibrinolytic enzyme, tissue-type plasminogen activator (tPA). However, whether the higher Lp(a) associates with lower tPA activity, the longitudinal changes of these parameters in hospitalized patients with COVID-19, and their correlation with clinical outcomes are unknown. Objectives: To assess if Lp(a) associates with lower tPA activity in COVID-19 patients, and how in COVID-19 populations Lp(a) and tPA change post infection. Methods: Endogenous tPA enzymatic activity, tPA or Lp(a) concentration were measured in plasma from hospitalized patients with and without COVID-19. The association between plasma tPA and adverse clinical outcomes was assessed. Results: In hospitalized patients with COVID-19, we found lower tPA enzymatic activity and higher plasma Lp(a) than that in non-COVID-19 controls. During hospitalization, Lp(a) increased and tPA activity decreased, which associates with mortality. Among those who survived, Lp(a) decreased and tPA enzymatic activity increased during recovery. In patients with COVID-19, tPA activity is inversely correlated with tPA concentrations, thus, in another larger COVID-19 cohort, we utilized plasma tPA concentration as a surrogate to inversely reflect tPA activity. The tPA concentration was positively associated with death, disease severity, plasma inflammatory, and prothrombotic markers, and with length of hospitalization among those who were discharged. Conclusion: High Lp(a) concentration provides a possible explanation for low endogenous tPA enzymatic activity, and poor clinical outcomes in patients with COVID-19.

14.
Biomaterials ; 302: 122324, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37738740

RESUMO

An embolic reagent with easy injection, well-controlled target embolization, and sustained release of chemotherapy drugs is urgently needed for successful trans-arterial chemo-embolization (TACE) treatment. However, the development of a highly effective embolic reagent is still challenged. Here, inspired and guided by the structural supporting properties and defense mechanisms of wood cell walls, an ideal lignin-based embolic nanogel (DOX-pN-KL) was explored. Based on the mechanical support of branched lignin and the π-π stacking force between the lignin aromatic ring with anti-tumor drug doxorubicin (DOX), DOX-pN-KL showed the highest mechanical strength among the reported thermosensitive embolization nanogel and performed high drug-loading and favorable sustained-release. Moreover, further TACE treatment and tumor microenvironment evaluation of VX2 tumor-bearing rabbits showed that this nanogel can completely block all levels of vessels in long term and continuously release DOX, thus having effective inhibition on tumor growth and metastasis. DOX-pN-KL is expected to be a promising alternative reagent for interventional therapy.


Assuntos
Lignina , Neoplasias Hepáticas , Animais , Coelhos , Nanogéis , Madeira , Neoplasias Hepáticas/terapia , Doxorrubicina , Stents , Microambiente Tumoral
15.
J Thromb Haemost ; 21(10): 2679-2696, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579878

RESUMO

Fibrinolysis is an enzymatic process that breaks down fibrin clots, while dyslipidemia refers to abnormal levels of lipids and lipoproteins in the blood. Both fibrinolysis and lipoprotein metabolism are critical mechanisms that regulate a myriad of functions in the body, and the imbalance of these mechanisms is linked to the development of pathologic conditions, such as thrombotic complications in atherosclerotic cardiovascular diseases. Accumulated evidence indicates the close relationship between the 2 seemingly distinct and complicated systems-fibrinolysis and lipoprotein metabolism. Observational studies in humans found that dyslipidemia, characterized by increased blood apoB-lipoprotein and decreased high-density lipoprotein, is associated with lower fibrinolytic potential. Genetic variants of some fibrinolytic regulators are associated with blood lipid levels, supporting a causal relationship between these regulators and lipoprotein metabolism. Mechanistic studies have elucidated many pathways that link the fibrinolytic system and lipoprotein metabolism. Moreover, profibrinolytic therapies improve lipid panels toward an overall cardiometabolic healthier phenotype, while some lipid-lowering treatments increase fibrinolytic potential. The complex relationship between lipoprotein and fibrinolysis warrants further research to improve our understanding of the bidirectional regulation between the mediators of fibrinolysis and lipoprotein metabolism.


Assuntos
Fibrinólise , Trombose , Humanos , Lipoproteínas/metabolismo , Lipídeos , Tempo de Lise do Coágulo de Fibrina
16.
Res Pract Thromb Haemost ; 7(4): 100193, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37538494

RESUMO

This year's Congress of the International Society of Thrombosis and Haemostasis (ISTH) took place in person in Montréal, Canada, from June 24-28, 2023. The conference, held annually, highlighted cutting-edge advances in basic, translational, population and clinical sciences relevant to the Society. As for all ISTH congresses, we offered a special, congress-specific scientific theme; this year, the special theme was immunothrombosis. Certainly, over the last few years, COVID-19 infection and its related thrombotic and other complications have renewed interest in the concepts of thromboinflammation and immunothrombosis; namely, the relationship between inflammation, infection and clotting. Other main scientific themes of the Congress included Arterial Thromboembolism, Coagulation and Natural Anticoagulants, Diagnostics and Omics, Fibrinolysis and Proteolysis, Hemophilia and Rare Bleeding Disorders, Hemostatic System in Cancer, Inflammation and Immunity, Pediatrics, Platelet Disorders, von Willebrand Disease and Thrombotic Microangiopathies, Platelets and Megakaryocytes, Vascular Biology, Venous Thromboembolism and Women's Health. Among other sessions, the program included 28 State-of-the-Art (SOA) sessions with a total of 84 talks given by internationally recognized leaders in the field. SOA speakers were invited to prepare brief illustrated reviews of their talks that were peer reviewed and are included in this article. These illustrated capsules highlight the major scientific advances with potential to impact clinical practice. Readers are invited to take advantage of the excellent educational resource provided by these illustrated capsules. They are also encouraged to use the image in social media to draw attention to the high quality and impact of the science presented at the Congress.

17.
Science ; 381(6661): eadh5207, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37651538

RESUMO

Apolipoprotein B (apoB)-lipoproteins initiate and promote atherosclerotic cardiovascular disease. Plasma tissue plasminogen activator (tPA) activity is negatively associated with atherogenic apoB-lipoprotein cholesterol levels in humans, but the mechanisms are unknown. We found that tPA, partially through the lysine-binding site on its Kringle 2 domain, binds to the N terminus of apoB, blocking the interaction between apoB and microsomal triglyceride transfer protein (MTP) in hepatocytes, thereby reducing very-low-density lipoprotein (VLDL) assembly and plasma apoB-lipoprotein cholesterol levels. Plasminogen activator inhibitor 1 (PAI-1) sequesters tPA away from apoB and increases VLDL assembly. Humans with PAI-1 deficiency have smaller VLDL particles and lower plasma levels of apoB-lipoprotein cholesterol. These results suggest a mechanism that fine-tunes VLDL assembly by intracellular interactions among tPA, PAI-1, and apoB in hepatocytes.


Assuntos
Apolipoproteínas B , Aterosclerose , Hepatócitos , Lipoproteínas VLDL , Inibidor 1 de Ativador de Plasminogênio , Ativador de Plasminogênio Tecidual , Humanos , Apolipoproteínas B/sangue , Aterosclerose/sangue , Aterosclerose/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Inibidor 1 de Ativador de Plasminogênio/sangue , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
18.
Chem Sci ; 14(32): 8448-8457, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592983

RESUMO

The structural evolution of highly mesoporous templated carbons is examined from temperatures of 1173 to 2873 K to elucidate the optimal conditions for facilitating graphene-zipping reactions whilst minimizing graphene stacking processes. Mesoporous carbons comprising a few-layer graphene wall display excellent thermal stability up to 2073 K coupled with a nanoporous structure and three-dimensional framework. Nevertheless, advanced temperature-programmed desorption (TPD), X-ray diffraction, and Raman spectroscopy show graphene-zipping reactions occur at temperatures between 1173 and 1873 K. TPD analysis estimates zipping reactions lead to a 1100 fold increase in the average graphene-domain, affording the structure a superior chemical stability, electrochemical stability, and electrical conductivity, while increasing the bulk modulus of the framework. At above 2073 K, the carbon framework shows a loss of porosity due to the development of graphene-stacking structures. Thus, a temperature range between 1873 and 2073 K is preferable to balance the developed graphene domain size and high porosity. Utilizing a neutron pair distribution function and soft X-ray emission spectra, we prove that these highly mesoporous carbons already consist of a well-developed sp2-carbon network, and the property evolution is governed by the changes in the edge sites and stacked structures.

19.
ACS Appl Mater Interfaces ; 15(34): 40397-40408, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37590155

RESUMO

In lithium-oxygen batteries, although the porous carbon cathodes are widely utilized to tailor the properties of discharged Li2O2, the impact of nanopore size on the Li2O2 formation and decomposition reactions remain incompletely understood. Here, we provide the straightforward elucidation on the effect of pore size in a range of 25-200 nm, using a highly ordered porous cathode matrix based on the carbon-coated anodic aluminum oxide membrane formed on an Al substrate (C/AAO_Al). When the nanopore size is 25 nm, film-like Li2O2 with a thickness of 2-5 nm is formed, possibly via a surface-driven mechanism. When the nanochannel becomes larger, the Li2O2 film thickness saturates at ca. 10 nm, along with crystalline Li2O2 particles possibly formed by a solution-mediated mechanism.

20.
Cancer Res Commun ; 3(7): 1366-1377, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37501682

RESUMO

NF1 is a key tumor suppressor that represses both RAS and estrogen receptor-α (ER) signaling in breast cancer. Blocking both pathways by fulvestrant (F), a selective ER degrader, together with binimetinib (B), a MEK inhibitor, promotes tumor regression in NF1-depleted ER+ models. We aimed to establish approaches to determine how NF1 protein levels impact B+F treatment response to improve our ability to identify B+F sensitive tumors. We examined a panel of ER+ patient-derived xenograft (PDX) models by DNA and mRNA sequencing and found that more than half of these models carried an NF1 shallow deletion and generally have low mRNA levels. Consistent with RAS and ER activation, RET and MEK levels in NF1-depleted tumors were elevated when profiled by mass spectrometry (MS) after kinase inhibitor bead pulldown. MS showed that NF1 can also directly and selectively bind to palbociclib-conjugated beads, aiding quantification. An IHC assay was also established to measure NF1, but the MS-based approach was more quantitative. Combined IHC and MS analysis defined a threshold of NF1 protein loss in ER+ breast PDX, below which tumors regressed upon treatment with B+F. These results suggest that we now have a MS-verified NF1 IHC assay that can be used for patient selection as a complement to somatic genomic analysis. Significance: A major challenge for targeting the consequence of tumor suppressor disruption is the accurate assessment of protein functional inactivation. NF1 can repress both RAS and ER signaling, and a ComboMATCH trial is underway to treat the patients with binimetinib and fulvestrant. Herein we report a MS-verified NF1 IHC assay that can determine a threshold for NF1 loss to predict treatment response. These approaches may be used to identify and expand the eligible patient population.


Assuntos
Neoplasias da Mama , Proteogenômica , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neurofibromina 1/genética , Fulvestranto/farmacologia , Receptores de Estrogênio/genética , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição NFI , RNA Mensageiro , Quinases de Proteína Quinase Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...